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Abstract

Constrained dynamics can be used to simulate the dynamics of rigid bodies when their
motion is restricted by some constraints like contacts, friction or joints for instance. We can
use a solver based on sequential impulses as in [4] to solve the constraints and compute the
forces that have to be applied on the bodies to keep the constraints satisfied. Then, using
a numerical integration technique like the semi-explicit Euler scheme for instance, we can
find the new positions and velocities of the bodies in order to simulate them across time.
For each kind of constraint (contact, friction, joints, . . . ), some quantities like the Jacobian
matrix or the bias velocity vector are required in the solver. Sometimes, it is difficult to
find documentation about the detailed derivation of those quantities. In this document, I
will describe how to derive those quantities for different type of constraints. I will also talk
about the limits and motors of some joints.
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1 Introduction

In this section, we will give a summary of the constrained dynamics theory as described in [1]
and [5]. It will also allow us to introduce some notation that will be used throughout the text.

1.1 Equations of motion

Consider that we have two rigid bodies B1 and B2 with positions x1(t) and x2(t) and orientations
q1(t) and q2(t). The orientation of a body Bi is specified by a unit quaternion qi(t). Now,
imagine that we describe the positions and orientations of both bodies using the state vector
s(t).

s(t) =


x1(t)
q1(t)
x2(t)
q2(t)

 ∈ R14 (1)

The motion of the bodies can be restricted by some constraints. It means that some forces
and torques have to be applied to the bodies to keep the constraints satisfied. We will use the
vector Fc(t) for all the forces and torques that have to be applied to the bodies B1 and B2 to
make sure the constraints remain valid.

Fc(t) =


fc1(t)
τc1(t)
fc2(t)
τc2(t)

 ∈ R12 (2)

where fci(t) is the force and τci(t) is the torque that need to be applied to the body Bi.
Similarly, we define the external forces and torques that can be applied on the bodies (like
gravity) using the vector Fext(t).

Fext(t) =


fe1(t)
τe1(t)
fe2(t)
τe2(t)

 ∈ R12 (3)

where fei(t) is the external force and τei(t) is the external torque on the body Bi.

Using the Newton’s second law, we get the following second-order differential equation to
solve : {

s̈(t) = M−1Ftotal = M−1(Fext + Fc)

s(0) = s0, ṡ(0) = v0
(4)

where M is the 12× 12 mass matrix that contains the masses and the inertia tensors of the
two bodies.

M =


m1E3 0 0 0

0 I1 0 0
0 0 m2E3 0
0 0 0 I2

 =⇒M−1 =


1
m1
E3 0 0 0

0 I−1
1 0 0

0 0 1
m2
E3 0

0 0 0 I−1
2

 (5)

where E3 is the 3 × 3 identity matrix, m1 and m2 are the masses of the two bodies and I1

and I2 are the 3× 3 world-space inertia tensor matrices of bodies B1 and B2 respectively. Also
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note that s0 is the initial state (positions and orientations) of the bodies at time t = 0 and v0
is the initial velocity state (linear and angular velocities) at time t = 0.

We want to solve the second-order differential equation 4 to find the state s(t) of the two
bodies across time. By introducing the velocity vector v(t) that contains the linear velocities v1
and v2 and the angular velocities ω1 and ω2 of the bodies B1 and B2:

v(t) =


v1(t)
ω1(t)
v2(t)
ω2(t)

 ∈ R12 (6)

we can transform equation 4 into two first-order differential equations.
ṡ(t) = Sv(t)

v̇(t) = M−1(Fext + Fc)

s(0) = s0, v(0) = v0

(7)

In this equation, the 14× 12 matrix S is given by:

S =


E3 0 0 0
0 Q1 0 0
0 0 E3 0
0 0 0 Q2

 with Qi =
1

2


−xi −yi −zi
wi zi −yi
−zi wi xi
yi −xi wi

 (8)

This is coming from the way we compute the time derivative of a position vector xi and of
a quaternion qi = (xi, yi, zi, wi). We have:

ẋi(t) = vi(t) and q̇i(t) =
1

2
ωi(t)qi(t) = Qiωi(t) (9)

A rigid body can move in six degrees of freedom (three for the translation and three for
the rotation). Therefore, to describe the motion of two rigid bodies, we need a total of twelve
degrees of freedom. However, you might have noticed that our state vector s(t) in equation 1
is specified with 14 values. This is because the orientations are represented with quaternions.
A quaternion has four values but represents only three degrees of freedom. It means that our
state vector s(t) is not the minimal vector that can represent the position and orientation of
two bodies. A minimal state vector could be written as:

r(t) =


x1(t)
θ1(t)
x2(t)
θ2(t)

 ∈ R12 with θi(t) =

αi(t)
βi(t)
γi(t)

 (10)

where αi, βi and γi are the three Euler angles representing the orientation of body Bi. Note
that θi is the integrating quantity of the angular velocity ωi. Therefore, we have:

v(t) =
d

dt
r(t) (11)

In general, we do not use the state vector r(t) because Euler angles are problematic for
describing rotations in Computer Graphics. Instead, we use the state vector s(t) with the ma-
trix S to convert from velocity state vector v(t) of length 12 to the state vector s(t) of length 14.
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Now that we have the equations of motions (equation 7), we need to solve them to find
the state vector s(t) at any given time t. To do this, we can use for instance the semi-implicit
Euler (or symplectic Euler) scheme for the numerical integration of the differential equations.
Consider that we are going to use the timestep ∆t for the iterations. Therefore, we have:{

si+1 = si + ∆t S vi+1

vi+1 = vi + ∆t M−1(Fext + Fc)
with

vi = v(ti), vi+1 = v(ti + ∆t)

si = s(ti), si+1 = s(ti + ∆t)
(12)

It means that if we know the current state si, the current velocity state vi and the forces
Fext and Fc at any given time ti, we are able to compute the next state si+1 at time ti+1 using
the previous equations.

1.2 Constrained Dynamics

Now that we have seen how to update the position of the bodies given the external force Fext

and the constraint force Fc, we need to figure out how to find the force Fc that has to be
applied to the bodies in order to keep a given constraint satisfied at all time. First, we need to
understand what is a constraint. A constraint is an equation (or inequation) which depends on
the state s(t) and that has to be satisfied during the simulation. Usually we use a constraint
function C(s). So typically, we can have the following constraint:

C(s) = 0 (13)

We say it is a position constraint because it is a constraint on s which contains the position
and orientation of the bodies. When the motion of the first body of the constraint is fixed, the
second body can move relatively to the first body with at most six degrees of freedom. The con-
straint function C(s) can at most constrain those six degrees of freedom (but not necessarily all
of them). Therefore, in general, the constraint function C(s) is such that C : R12 → Rn where
n is the number of degrees of freedom that the constraint removes from the system. Moreover,
we can separate the constraint function C(s) in two functions. One function Ctrans(s) for the
translation motion and one function Crot(s) for the rotation motion.

Note that it is also possible to have an inequality constraint like:

C(s) ≥ 0 (14)

The constraint is satisfied when the constraint equation 13 (or inequation 14) is satisfied with
the current state s(t) of the bodies. If we take the time derivative of the constraint equation,
we have:

Ċ(s) =
dC

ds

ds

dt
=

dC

ds
S︸ ︷︷ ︸

J

v(t) = Jv(t) = 0 (15)

where J is a n × 12 matrix called the Jacobian matrix of the constraint. Because it is the
time derivative of a position constraint, we say that equation 15 is a velocity constraint. If we
always update the velocities of the bodies such that the constraint 15 is satisfied, the bodies will
always end up in positions and orientations that satisfy the constraint. When using a velocity
constraint solver, we are working on the velocity level. It means that we are trying to find the
velocities of the bodies such that the velocity constraints are valid. Then, we use those velocities
to update the position and orientation of the bodies. Note that sometimes, we do not have a
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position constraint but we can directly create a velocity constraint.

In general, the velocity constraint looks like this:

Ċ(s) = Jv(t) + b = 0 (16)

where the vector b is called the bias velocity vector. If the vector b is not null, it means that
the constraint force Fc will work. Sometimes, this is needed. For instance, it can be used for
position correction or joint motors. As we have seen before, we are solving the constraints on
the velocity level. Sometimes, some error can be introduced when updating the position of the
bodies. This issue is called position error or position drift. We can add a term b in the velocity
constraint in order to correct for this problem. The error of the position constraint is measured
by the position constraint function C(s). If we want this error to be reduced to zero in the next
timestep ∆t, the velocity needed to correct for this error is C(s)

∆t . However, we do not want the
error to be removed in a single timestep. Instead, the velocity needed to correct for the position
error is:

b =
β

∆t
C(s) (17)

where β is a value between 0 and 1 called the bias factor. The bias factor describes the
amount of error that is corrected at each timestep. This type of error correction is called Baum-
garte stabilization [2].

Remember that our goal is to find the force Fc that has to be applied on the bodies to keep
the constraint satisfy. The force Fc should only be there to keep the constraint satisfied but it
should not work. It means that the force should not add energy into the system. This is the
principal of virtual work. As explained in [1], this is valid only if the force Fc is such that:

Fc = JTλ (18)

where λ is a n×1 vector. To prove that this force does not work, we can compute the power
P and check that it is zero.

P = Fc · v(t) = F T
c v(t) = (JTλ)Tv(t) = λTJv(t) = 0 (19)

The variable λ is called a Lagrange multiplier. Observe that if we know the Jacobian matrix
J , we only need to find the unknown λ to find the force Fc.

If we look at equation 12, we want the new velocity vi+1 to satisfy the velocity constraint
16. Therefore, we have:

Jvi+1 + b = 0

⇔ J(vi + ∆t M−1(Fext + Fc)) + b = 0

⇔ Jvi + JM−1Fext∆t+ JM−1JTλ∆t+ b = 0

⇔ Jv′i + JM−1JTλ′ = −b with

{
v′i = vi +M−1Fext∆t

λ′ = λ∆t

⇔ JM−1JTλ′ = −(Jv′i + b)

⇔ Kλ′ = −(Jv′i + b) with K = JM−1JT (20)
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We want to find λ. Therefore, we need to solve the equation 20 for λ′. If the matrix K is
invertible, we have the solution:

λ′ = −K−1(Jv′i + b) (21)

Once λ′ has been found, we can compute the force Fc.

Fc = JTλ = JTλ′
1

∆t
(22)

If we use the sequential impulse technique from [4] to solve the constraints, we need to find
the impulse Pc.

Pc = Fc ∆t = JTλ ∆t = JTλ′ (23)

Then, we can use the equation 12 to find the new velocities vi+1 and the new positions si+1

of the bodies.

To sum up, in order to create a constraint, we need to find the position constraint function
C(s). Then, we need to compute the time derivative of this function to obtain the velocity
constraint. Using the velocity constraint, we have to identify the Jacobian matrix J and the
bias velocity vector b. Then, we need to compute the matrix K = JM−1JT . In the next section
of this document, we will explain how to find all those quantities for different kinds of constraints
that are commonly used in a rigid body simulation.

2 Constraints

2.1 Contact and Friction

Here, we will derive the constraint needed to make sure that two bodies in contact will not
penetrate each other but will collide instead. This is called the penetration constraint. We also
need another constraint to simulate friction between two bodies in contact. This is called the
friction constraint.

2.1.1 Position constraint

Let’s start with the penetration constraint. Consider that we have two rigid bodies B1 and B2

that are in contact. We call p1 and p2 the two contact points (in world-space coordinates) on
body B1 and body B2 respectively. If x1 and x2 are the positions of the center of mass of body
B1 and B2 respectively and r1 and r2 are the vectors from the center of mass of the each body
to the contact points, we have:

p1 = x1 + r1 and p2 = x2 + r2 (24)

We also need to have the surface normal n1 at the contact point p1 on the body B1. The
contact normal is a unit length vector pointing outside the body B1.

In order to find the penetration constraint, we would like to compute the penetration depth
of the two bodies in contact. The penetration depth is basically the distance between the two
contact points p1 and p2 in the direction of the contact normal n1. This penetration depth is
our penetration constraint function Cpen(s):

Cpen(s) = (p2 − p1) · n1 = (x2 + r2 − x1 − r1) · n1 (25)
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Observe that the penetration depth between the two bodies is positive when they are sepa-
rated (not in contact) and negative when the two bodies are penetrating. We want the contact
constraint to be satisfied when the bodies are not penetrating. Therefore, the penetration con-
straint is valid when:

Cpen(s) ≥ 0 (26)

2.1.2 Time derivative

Now, we need to compute the time derivative of the contact penetration constraint in order to
find the Jacobian matrix J . Here is how to do it:

Ċpen(s) =
d

dt
((x2 + r2 − x1 − r1) · n1)

=
d

dt
(x2 + r2 − x1 − r1) · n1 + (x2 + r2 − x1 − r1) · d

dt
(n1)

= (v2 + ω2 × r2 − v1 − ω1 × r1) · n1 + (x2 + r2 − x1 − r1) · d

dt
(n1) (27)

≈ (v2 + ω2 × r2 − v1 − ω1 × r1) · n1

= v2 · n1 + ω2 · (r2 × n1)− v1 · n1 − ω1 · (r1 × n1)

=
(
−nT

1 −(r1 × n1)T nT
1 (r2 × n1)T

)︸ ︷︷ ︸
Jpen


v1
ω1

v2
ω2


︸ ︷︷ ︸

v

(28)

In equation 27, we usually make the approximation that the penetration is very small (as
in [3]) and therefore we can ignore the second term. We have now found the 1 × 12 Jacobian
matrix Jpen for the contact penetration constraint.

Note that we have not created a position constraint for friction. This is because the friction
can only be described by a constraint on the velocity level (like a motor constraint). Consider
two unit length vectors u1 and u2 that are orthogonal to the contact normal vector n1. Those
two vectors span the contact plane. The idea is to slow down the rigid bodies in the direction of
the two vectors u1 and u2 to simulate friction. We will use the two following friction constraints
for that:
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Ċfric 1(s) = (v2 + ω2 × r2 − v1 − ω1 × r1) · u1

= v2 · u1 + ω2 · (r2 × u1)− v1 · u1 − ω1 · (r1 × u1)

=
(
−uT

1 −(r1 × u1)T uT
1 (r2 × u1)T

)︸ ︷︷ ︸
Jfric 1


v1
ω1

v2
ω2


︸ ︷︷ ︸

v

(29)

Ċfric 2(s) = (v2 + ω2 × r2 − v1 − ω1 × r1) · u2

= v2 · u2 + ω2 · (r2 × u2)− v1 · u2 − ω1 · (r1 × u2)

=
(
−uT

2 −(r1 × u2)T uT
2 (r2 × u2)T

)︸ ︷︷ ︸
Jfric 2


v1
ω1

v2
ω2


︸ ︷︷ ︸

v

(30)

Those constraints are satisfied when Ċfric 1(s) = 0 and Ċfric 2(s) = 0. It means that they
will try to stop the relative motion of the two bodies. However, the constraint force Fc that
we are going to apply to keep the constraint satisfied have to be bounded. In the Coulomb’s
friction law, the friction force Fc is bounded according to the following relation:

‖Fc‖ ≤ µ‖Fn‖ (31)

where Fn is the contact normal force and µ is the friction coefficient. Therefore, we have:

‖Fc‖ ≤ µ‖Fn‖
⇔ ‖JT

fricλfric‖ ≤ µ‖Fn‖
⇔ |λfric| ≤ µ‖Fn‖
⇔ −µ‖Fn‖ ≤ λfric ≤ µ‖Fn‖ (32)

Note that in the application, we use λ′ = λ∆t. Therefore, we have:

−µ‖Fn‖∆t ≤ λ′fric ≤ µ‖Fn‖∆t (33)

We have found the bounds on the Lagrange multiplier λ′fric used to find the constraint force
for the friction constraint.

2.1.3 Constraint mass matrix K

Now, we need to compute the 1× 1 matrix Kpen for the contact penetration constraint:
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Kpen = JpenM
−1JT

pen

=
(
−nT

1 −(r1 × n1)T nT
1 (r2 × n1)T

)
1
m1
E3 0 0 0

0 I−1
1 0 0

0 0 1
m2
E3 0

0 0 0 I−1
2

 JT
pen

=
(
− 1

m1
nT
1 −(r1 × n1)T I−1

1
1
m2
nT
1 (r2 × n1)T I−1

2

)
JT
pen

=
(
− 1

m1
nT
1 −(r1 × n1)T I−1

1
1
m2
nT
1 (r2 × n1)T I−1

2

)
−n1

−(r1 × n1)
n1

(r2 × n1)


=

1

m1
nT
1n1 +

1

m2
nT
1n1 + (r1 × n1)T I−1

1 (r1 × n1) + (r2 × n1)T I−1
2 (r2 × n1)

=
1

m1
+

1

m2
+ (r1 × n1)T I−1

1 (r1 × n1) + (r2 × n1)T I−1
2 (r2 × n1) (34)

Note that we have used the fact that the normal vector n1 is a unit length vector. Therefore,
we have nT

1n1 = 1. Now, we have found the 1× 1 matrix Kpen.

Now, we will see how to compute the two 1 × 1 matrices Kfric 1 and Kfric 2 for the two
friction constraints.
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Kfric 1 = Jfric 1M
−1JT

fric 1

=
(
−uT

1 −(r1 × u1)T uT
1 (r2 × u1)T

)
1
m1
E3 0 0 0

0 I−1
1 0 0

0 0 1
m2
E3 0

0 0 0 I−1
2

 JT
fric 1

=
(
− 1

m1
uT
1 −(r1 × u1)T I−1

1
1
m2
uT
1 (r2 × u1)T I−1

2

)
JT
fric 1

=
(
− 1

m1
uT
1 −(r1 × u1)T I−1

1
1
m2
uT
1 (r2 × u1)T I−1

2

)
−u1

−(r1 × u1)
u1

(r2 × u1)


=

1

m1
uT
1u1 +

1

m2
uT
1u1 + (r1 × u1)T I−1

1 (r1 × u1) + (r2 × u1)T I−1
2 (r2 × u1)

=
1

m1
+

1

m2
+ (r1 × u1)T I−1

1 (r1 × u1) + (r2 × u1)T I−1
2 (r2 × u1) (35)

Kfric 2 = Jfric 2M
−1JT

fric 2

=
(
−uT

2 −(r1 × u2)T uT
2 (r2 × u2)T

)
1
m1
E3 0 0 0

0 I−1
1 0 0

0 0 1
m2
E3 0

0 0 0 I−1
2

 JT
fric 2

=
(
− 1

m1
uT
2 −(r1 × u2)T I−1

1
1
m2
uT
2 (r2 × u2)T I−1

2

)
JT
fric 2

=
(
− 1

m1
uT
2 −(r1 × u2)T I−1

1
1
m2
uT
2 (r2 × u2)T I−1

2

)
−u2

−(r1 × u2)
u2

(r2 × u2)


=

1

m1
uT
2u2 +

1

m2
uT
2u2 + (r1 × u2)T I−1

1 (r1 × u2) + (r2 × u2)T I−1
2 (r2 × u2)

=
1

m1
+

1

m2
+ (r1 × u2)T I−1

1 (r1 × u2) + (r2 × u2)T I−1
2 (r2 × u2) (36)

2.1.4 Bias velocity vector

The bias velocity vector bpen for the contact penetration constraint is used for two things.
First, we use it to correct the position error as discussed in section 1. The position error for this
constraint is the penetration depth. As we have seen, we can compute the term berror of the
bias velocity by:

berror =
β

∆t
Cpen(si) (37)

where Cpen(si) is the evaluation of the penetration position constraint at state si. Note that
in this situation, the vector berror is a scalar value. Secondly, we use the bias velocity vector
bpen to introduce a velocity restitution. For instance, when an object falls on the floor, it might
bounce. Therefore, we need to introduce some velocity reflection when a contact occurs. The
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relative velocity vn between the two bodies in the direction of the contact normal n1 is given
by:

vn = (v2 + ω2 × r2 − v1 − ω1 × r1) · n1 (38)

Therefore, after the contact, we want the following relative velocity v′n:

v′n ≥ −αvn
⇔ v′n + αvn ≥ 0

(39)

where α is the restitution factor between 0 and 1. When α = 0, the bodies will not bounce
at all and when α = 1 the whole relative velocity before the contact will be restitued and the
bodies will be very bouncy. We can use the following bias velocity vector bres for the restitution:

bres = αvn = α(v2 + ω2 × r2 − v1 − ω1 × r1) · n1 (40)

Therefore, the final bias velocity vector for the contact penetration constraint is:

bpen = berror + bres (41)

At the end, here is our final velocity constraint for the contact penetration:

Ċpen(s) + bpen ≥ 0 (42)

Usually, we do not need any position correction for the friction constraints. Therefore, we
have the following velocity constraints for friction:

Ċfric 1(s) = 0 (43)
Ċfric 2(s) = 0 (44)

2.2 Ball-And-Socket Joint

The Ball-And-Socket joint only allows arbitrary rotation between two bodies but no translation.
It has three degrees of freedom. To create a ball-and-socket joint, the user only has to specify
an anchor point in world-space coordinates. At the joint creation, we store the anchor point in
the local-space of each body. Then, at each frame and for each body, we convert the local-space
anchor point back into the world-space to have the anchor point pi for each body Bi.

2.2.1 Position constraint

The ball-and-socket joint does not constrain the rotation motion and therefore, we only need a
position constraint Ctrans for the translation. We have the following position constraint function:

Ctrans(s) = x2 + r2 − x1 − r1 (45)

where x1 and x2 are the world-space positions of body B1 and B2 and r1 and r2 are the
vectors from body center to the anchor point pi in world-space coordinates (pi = xi +ri). This
constraint specifies that the world-space positions of the anchor points of both bodies must be
equal.
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This constraint removes three translation degrees of freedom from the system. Therefore,
we have : Ctrans(s) : R12 → R3. The constraint is satisfied when :

Ctrans(s) = 0 (46)

2.2.2 Time derivative

Then, we need to compute the time derivative Ċtrans(s) in order to find the Jacobian matrix.

Ċtrans(s) =
d

dt
(x2 + r2 − x1 − r1)

= v2 + ω2 × r2 − v1 − ω1 × r1
= v2 − [r2]xω2 − v1 + [r1]xω1

=
(
−E3 [r1]x E3 −[r2]x

)︸ ︷︷ ︸
Jtrans


v1
ω1

v2
ω2


︸ ︷︷ ︸

v

(47)

where E3 is the 3×3 identity matrix and [r1]x is the 3×3 skew-symmetric matrix constructed
using the vector r1 (see appendix A). We also have Jtrans which is the Jacobian matrix that is a
3× 12 matrix in this case and v is a 12× 1 vector that contains the linear and angular velocities
of bodies B1 and B2.

2.2.3 Constraint mass matrix K

Now, we need to compute the matrix Ktrans. Here is how to compute the 3× 3 matrix Ktrans.

Ktrans = JtransM
−1JT

trans

=
(
−E3 [r1]x E3 −[r2]x

)
1
m1
E3 0 0 0

0 I−1
1 0 0

0 0 1
m2
E3 0

0 0 0 I−1
2



−E3

[r1]Tx
E3

−[r2]Tx


=

1

m1
E3 + [r1]xI

−1
1 [r1]Tx +

1

m2
E3 + [r2]xI

−1
2 [r2]Tx (48)

2.2.4 Bias velocity vector

The bias velocity vector btrans for the ball-and-socket joint is used to correct the position error
as discussed in section 1. As we have seen, we can compute the term btrans of the bias velocity
with:

btrans =
β

∆t
Ctrans(si) (49)

where Ctrans(si) is the evaluation of the position constraint at state si. At the end, here is
our final velocity constraint for the ball-and-socket joint:

Ċtrans(s) + bpen = 0 (50)
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2.3 Slider Joint

A slider joint only allows relative translation between two bodies in a single direction. It has
only one degree of freedom. The slider joint is defined by a slider axis a that is the direction of
translation and by an anchor point in world-space coordinates. At the joint creation, we store
the anchor point in the local-space of each body. Then, at each frame and for each body, we
convert the local-space anchor point back into the world-space to have the anchor point pi for
each body Bi.

2.3.1 Position constraint

We have the following translation position constraint :

Ctrans(s) =

(
(x2 + r2 − x1 − r1) · n1

(x2 + r2 − x1 − r1) · n2

)
(51)

where x1 and x2 are the world-space positions of body B1 and body B2 and r1 and r2 are
the vectors from body center to the world-space anchor point of each body (pi = xi + ri). The
two vectors n1 and n2 are two unit orthogonal vectors that are orthogonal to the slider axis
a. At the joint creation, we convert the slider axis a into the local-space of body B1 and we
get the vector al. Then, at each frame, we convert the vector al back to world-space to obtain
the vector aw. Then, we create the two orthogonal vectors n1 and n2 that are orthogonal to
aw. The two previous translation constraints specify that there should be no relative translation
orthogonal to the slider axis a. This constraint removes two degrees of freedom from the system.
Therefore, we have : Ctrans(s) : R12 → R2. The constraint is satisfied when:

Ctrans(s) = 0 (52)

Here is the rotation position constraint:

Crot(s) =

θ2x − θ1x

θ2y − θ1y

θ2z − θ1z

 (53)

Here θix, θiy, θiz are the orientation angles of the body Bi around the x, y and z axis. Those
three rotation constraints mean that there should be no relative rotation between the two bodies.
This constraint removes three degrees of freedom from the system. Therefore, we have: Crot(s) :
R12 → R3. The constraint is satisfied when:

Crot(s) = 0 (54)

2.3.2 Time derivative

Then, we need to compute the time derivative Ċ(s) in order to find the Jacobian matrix.

Here is the time derivative of the translation position constraint Ctrans :
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Ċtrans(s) =

(
d
dt((x2 + r2 − x1 − r1) · n1)
d
dt((x2 + r2 − x1 − r1) · n2)

)
=

(
d
dt(x2 + r2 − x1 − r1) · n1 + d

dt(n1) · (x2 + r2 − x1 − r1)
d
dt(x2 + r2 − x1 − r1) · n2 + d

dt(n2) · (x2 + r2 − x1 − r1)

)

=


(v2 + ω2 × r2 − v1 − ω1 × r1) · n1 + (ω1 × n1) · (x2 + r2 − x1 − r1︸ ︷︷ ︸

u

)

(v2 + ω2 × r2 − v1 − ω1 × r1) · n2 + (ω1 × n2) · (x2 + r2 − x1 − r1︸ ︷︷ ︸
u

)


=

(
n1 · v2 + ω2 · (r2 × n1)− n1 · v1 − ω1 · ((r1 + u)× n1)
n2 · v2 + ω2 · (r2 × n2)− n2 · v1 − ω1 · ((r1 + u)× n2)

)

=

(
−nT

1 −((r1 + u)× n1)T nT
1 (r2 × n1)T

−nT
2 −((r1 + u)× n2)T nT

2 (r2 × n2)T

)
︸ ︷︷ ︸

Jtrans


v1
ω1

v2
ω2


︸ ︷︷ ︸

v

(55)

The jacobian matrix Jtrans is a 2 × 12 matrix. Note that we have used the fact that the
vectors n1 and n2 have been created from the vector al that is stored in the local-space of body
B1. Therefore, the vectors n1 and n2 are fixed length vectors rotating at the angular velocity
ω1 of body B1. This is why we have:

d

dt
(n1) = ω1 × n1 (56)

d

dt
(n2) = ω1 × n2 (57)

Here is the time derivative of the rotation position constraint Crot:

Ċrot(s) =

 d
dt(θ2x − θ1x)
d
dt(θ2y − θ1y)
d
dt(θ2z − θ1z)


=

ω2x − ω1x

ω2y − ω1y

ω2z − ω1z


= ω2 − ω1

=
(
0 −E3 0 E3

)︸ ︷︷ ︸
Jrot


v1
ω1

v2
ω2


︸ ︷︷ ︸

v

(58)

We have found the 3× 12 Jacobian matrix Jrot.

2.3.3 Constraint mass matrix K

Now, we need to compute the constraint mass matrix Ktrans for the translation constraint:
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Ktrans

= JtransM
−1JT

trans

=

(
−nT

1 −((r1 + u)× n1)T nT
1 (r2 × n1)T

−nT
2 −((r1 + u)× n2)T nT

2 (r2 × n2)T

)
1
m1
E3 0 0 0

0 I−1
1 0 0

0 0 1
m2
E3 0

0 0 0 I−1
2

 JT
trans

=

(
− 1

m1
nT
1 −((r1 + u)× n1)T I−1

1
1
m2
nT
1 (r2 × n1)T I−1

2

− 1
m1
nT
2 −((r1 + u)× n2)T I−1

1
1
m2
nT
2 (r2 × n2)T I−1

2

)
JT
trans

=

(
− 1

m1
nT
1 −((r1 + u)× n1)T I−1

1
1
m2
nT
1 (r2 × n1)T I−1

2

− 1
m1
nT
2 −((r1 + u)× n2)T I−1

1
1
m2
nT
2 (r2 × n2)T I−1

2

)
−n1 −n2

−((r1 + u)× n1) −((r1 + u)× n2)
n1 n2

(r2 × n1) (r2 × n2)


=

(
a b
c d

)
(59)

where :

a =

(
1

m1
+

1

m2

)
+ ((r1 + u)× n1)T I−1

1 ((r1 + u)× n1) + (r2 × n1)T I−1
2 (r2 × n1)

b = ((r1 + u)× n1)T I−1
1 ((r1 + u)× n2) + (r2 × n1)T I−1

2 (r2 × n2)

c = ((r1 + u)× n2)T I−1
1 ((r1 + u)× n1) + (r2 × n2)T I−1

2 (r2 × n1)

d =

(
1

m1
+

1

m2

)
+ ((r1 + u)× n2)T I−1

1 ((r1 + u)× n2) + (r2 × n2)T I−1
2 (r2 × n2)

Now, we need to compute the 3× 3 matrix Krot for the rotation constraint.

Krot = JrotM
−1JT

rot

=
(
0 −E3 0 E3

)
1
m1
E3 0 0 0

0 I−1
1 0 0

0 0 1
m2
E3 0

0 0 0 I−1
2




0
−E3

0
E3



=
(
0 −I−1

1 0 I−1
2

)
0
−E3

0
E3


= I−1

1 + I−1
2 (60)

2.3.4 Bias velocity vector

The bias velocity vectors btrans and brot for the translation and rotation constraints of the
slider joint are used to correct the position error as discussed in section 1. As we have seen, we
can compute those vectors with:
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btrans =
β

∆t
Ctrans(si) (61)

brot =
β

∆t
Crot(si) (62)

where Ctrans(si) and Ctrans(si) are the evaluations of the position constraints at state si.

Finally, here are the final velocity constraints for the slider joint:

Ċtrans(s) + btrans = 0 (63)
Ċrot(s) + brot = 0 (64)

2.3.5 Limits

It is possible to specify limits for the slider joint to constrain the range of motion along the
translation axis.

We consider the vector u between the two world-space anchor points p1 and p2 of each body:

u = p2 − p1 = x2 + r2 − x1 − r1 (65)

If we take the dot product of u and the slider axis vector a, we get the distance d between
the anchor points along the slider direction:

d = u · a (66)

We will use this distance d between the two bodies as the relative translation along the slider
axis. At the beginning, the vector u is zero and therefore, the distance d is also zero. The user
is able to define two translation limits dmin and dmax such that dmin ≤ 0 and dmax ≥ 0. We will
use two additional constraints for the limits of the joint. One for the minimum limit and one
for the maximum limit. As for the slider joint position constraint, we will derive the position
constraints for the limits.

The minimum limit is specified by the dmin distance. The minimum limit constraint is
violated when:

d ≤ dmin (67)

Using this, we can create a minimum limit position constraint Cmin(s) :

Cmin(s) = u · a− dmin (68)

This limit constraint is satisfied when Cmin(s) ≥ 0. This position constraint is such that :
Cmin(s) : R12 → R. As for the slider joint constraint, we need to calculate the time derivative
of the position constraint in order to isolate the Jacobian matrix Jmin.
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Ċmin(s) =
d

dt
(u · a− dmin)

=
d

dt
(u · a)

=
du

dt
· a+ u · da

dt

= (v2 + ω2 × r2 − v1 − ω1 × r1) · a+ u · da

dt
= (v2 + ω2 × r2 − v1 − ω1 × r1) · a+ u · (ω1 × a)

= a · v2 + ω2 · (r2 × a)− a · v1 − ω1 · ((r1 + u)× a)

=
(
−aT −((r1 + u)× a)T aT (r2 × a)T

)︸ ︷︷ ︸
Jmin


v1
ω1

v2
ω2

 (69)

Here Jmin is a 1× 12 matrix.

Then, we can compute the 1× 1 matrix Kmin:

Kmin = JminM
−1JT

min

=
(
−aT −((r1 + u)× a)T aT (r2 × a)T

)
1
m1
E3 0 0 0

0 I−1
1 0 0

0 0 1
m2
E3 0

0 0 0 I−1
2

 JT
min

=

(
1

m1
+

1

m2

)
aTa+ ((r1 + u)× a)T I−1

1 ((r1 + u)× a) + (r2 × a)T I−1
2 (r2 × a)

=

(
1

m1
+

1

m2

)
+ ((r1 + u)× a)T I−1

1 ((r1 + u)× a) + (r2 × a)T I−1
2 (r2 × a) (70)

Note that we used the fact that a is a unit vector and therefore aTa = 1.

The maximum limit is specified by the dmax distance. The maximum limit constraint is
violated when:

d ≥ dmax (71)

Using this, we can create a maximum limit position constraint Cmax(s):

Cmax(s) = dmax − u · a (72)

This limit constraint is satisfied when Cmax(s) ≥ 0. This position constraint is such that :
Cmax(s) : R12 → R. As for the slider joint constraint, we need to calculate the time derivative
of the position constraint in order to isolate the Jacobian matrix Jmax.
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Ċmax(s) =
d

dt
(dmax − u · a)

= − d

dt
(u · a)

=
(
aT ((r1 + u)× a)T −aT −(r2 × a)T

)︸ ︷︷ ︸
Jmax


v1
ω1

v2
ω2

 (73)

Here Jmax is a 1× 12 matrix.

When we compute the 1× 1 matrix Kmax, we obtain the following result:

Kmax = Kmin

=

(
1

m1
+

1

m2

)
+ ((r1 + u)× a)T I−1

1 ((r1 + u)× a) +

(r2 × a)T I−1
2 (r2 × a) (74)

The bias velocity vectors bmin and bmax for the limits constraints of the slider joint are
used to correct the position error. Here is how to compute them:

bmin =
β

∆t
Cmin(si) (75)

bmax =
β

∆t
Cmax(si) (76)

where Cmin(si) and Cmax(si) are the evaluations of the limit constraints at state si. Finally,
we have the following two velocity constraints for the limits:

Ċmin(s) + bmin ≥ 0 (77)
Ċmax(s) + bmax ≥ 0 (78)

2.3.6 Motor

The motor of the slider joint is used to keep a relative speed vmotor between the bodies of the
joint along the slider axis. In order to keep this relative speed we need to apply a force that
cannot exceed a given maximum force ‖Fmax‖ specified by the user. The motor is represented
by a new constraint between the two bodies of the joint. Note that for a motor, we do not have a
position constraint. Instead, we are directly working on the velocity level. Here is the constraint
involving the velocities of the bodies:

a · (v2 − v1) = vmotor (79)

This equation means that the relative velocity difference between the two bodies projected
onto the slider axis a has to be the motor speed vmotor. Therefore, we can create the following
velocity constraint function Ċmotor(s):

Ċmotor(s) = a · (v1 − v2) + vmotor = 0 (80)
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As usual we can rewrite the velocity constraint using a Jacobian matrix Jmotor:

Ċmotor(s) =
(
aT 0 −aT 0

)︸ ︷︷ ︸
Jmotor


v1
ω1

v2
ω2

+ vmotor = Jmotorv + b = 0 (81)

Note that we have the velocity bias vector b = vmotor (a scalar value in this situation).

Now that we have the Jacobian matrix Jmotor, we can compute the matrix Kmotor:

Kmotor = JmotorM
−1JT

motor

=
(
aT 0 −aT 0

)
1
m1
E3 0 0 0

0 I−1
1 0 0

0 0 1
m2
E3 0

0 0 0 I−1
2



a
0
−a
0


=

1

m1
+

1

m2
(82)

We still need to find the valid bounds on the Lagrange multiplier λmotor used to solve the
constraint. We know the maximum allowed force ‖Fmax‖ to be applied in order to satisfy the
constraint. Remember that this maximum allowed force is given by the user. We want:

‖Fc‖ ≤ ‖Fmax‖
⇔ ‖JT

motorλmotor‖ ≤ ‖Fmax‖
⇔ |λmotor| ≤ ‖Fmax‖
⇔ −‖Fmax‖ ≤ λmotor ≤ ‖Fmax‖ (83)

Note that in the application, we use λ′ = λ∆t. Therefore, we have:

−‖Fmax‖∆t ≤ λ′motor ≤ ‖Fmax‖∆t (84)

We have found the bounds on the Lagrange multiplier λ′motor used to compute the constraint
force for the slider motor.

2.4 Hinge Joint

A hinge joint only allows relative rotation between two bodies around a single axis. It has one
degree of freedom. The hinge joint is defined by a unit length world-space hinge axis a vector
that is the rotation axis around which the two bodies can rotate and by a world-space anchor
point. At the joint creation, we store the anchor point in the local-space of each body. Then, at
each frame and for each body, we convert the local-space anchor point back into the world-space
to have the anchor point pi for each body Bi.

2.4.1 Position constraint

We have the following translation constraint function:

Ctrans(s) = x2 + r2 + r2 − x1 − r1 (85)
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where x1 and x2 are the world-space positions of body B1 and body B2 and r1 and r2
are the vectors from body center to the anchor point of each body in world-space coordinates
(pi = xi + ri). This translation constraint specifies that there should be no relative translation
between the two anchor points of each body. This constraint removes three degrees of freedom
from the system. Therefore, we have : Ctrans(s) : R12 → R3. The constraint is satisfied when:

Ctrans(s) = 0 (86)

Note that this is exactly the same translation constraint as for the ball-and-socket joint (see
equation 45).

Now, we need to find the rotation constraint for the hinge joint. At the beginning of the
simulation, when the user specifies the world-space hinge axis vector a, we convert this vector
into two local-space vectors a1l and a2l in each local-space of the two bodies of the joint. Then,
at each frame, we convert those two vectors back in world-space. So we get the two unit length
vectors a1 and a2 in world-space coordinates. Then, we compute two unit orthogonal vectors
b2 and c2 that are orthogonal to the vector a2.

Here is the rotation constraint function:

Crot(s) =

(
a1 · b2
a1 · c2

)
(87)

Those two rotation constraints mean that the only allowed rotation between the bodies is
around the hinge axis. This constraint removes two rotational degrees of freedom from the
system. Therefore, we have : Crot(s) : R12 → R2. The constraint is satisfied when:

Crot(s) = 0 (88)

2.4.2 Time derivative

Then, we need to compute the time derivative Ċ(s) in order to find the Jacobian matrix.

As we have seen before, the translation constraint of the hinge joint is exactly the same as
for the ball-and-socket joint. Therefore, the time derivative of the translation constraint is given
by equation 47 and we have the following Jacobian matrix:

Jtrans =
(
−E3 [r1]x E3 −[r2]x

)
(89)

Now, we need to compute the time derivative of the rotation constraint Crot(s) in order to
find the Jacobian matrix Jrot. Here is how to do it:
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Ċrot(s) =

(
d
dt(a1 · b2)
d
dt(a1 · c2)

)
=

(
d
dt(a1) · b2 + a1 · d

dt(b2)
d
dt(a1) · c2 + a1 · d

dt(c2)

)
=

(
(ω1 × a1) · b2 + a1 · (ω2 × b2)
(ω1 × a1) · c2 + a1 · (ω2 × c2)

)
=

(
ω1 · (a1 × b2) + ω2 · (b2 × a1)
ω1 · (a1 × c2) + ω2 · (c2 × a1)

)
=

(
(b2 × a1) · (ω2 − ω1)
(c2 × a1) · (ω2 − ω1)

)

=

(
0 −(b2 × a1) 0 (b2 × a1)
0 −(c2 × a1) 0 (c2 × a1)

)
︸ ︷︷ ︸

Jrot


v1
ω1

v2
ω2

 (90)

Here, Jrot is a 2× 12 matrix.

2.4.3 Constraint mass matrix K

As we have seen before, the translation constraint of the hinge joint is the same as the one of
the ball-and-socket joint. Therefore, the 3× 3 matrix Ktrans is already given by equation 48.

Ktrans =
1

m1
E3 + [r1]xI

−1
1 [r1]Tx +

1

m2
E3 + [r2]xI

−1
2 [r2]Tx (91)

Now, we need to compute the 2× 2 matrix Krot for the rotation constraint. Here is how to
do it :

Krot = JrotM
−1JT

rot

=

(
0 −(b2 × a1)T 0 (b2 × a1)T

0 −(c2 × a1)T 0 (c2 × a1)T

)
1
m1
E3 0 0 0

0 I−1
1 0 0

0 0 1
m2
E3 0

0 0 0 I−1
2

 JT
rot

=

(
0 −(b2 × a1)T I−1

1 0 (b2 × a1)T I−1
2

0 −(c2 × a1)T I−1
1 0 (c2 × a1)T I−1

2

)
0 0

−(b2 × a1) −(c2 × a1)
0 0

(b2 × a1) (c2 × a1)


=

(
a b
c d

)
(92)

where :

a = (b2 × a1)T I−1
1 (b2 × a1) + (b2 × a1)T I−1

2 (b2 × a1) (93)
b = (b2 × a1)T I−1

1 (c2 × a1) + (b2 × a1)T I−1
2 (c2 × a1) (94)

c = (c2 × a1)T I−1
1 (b2 × a1) + (c2 × a1)T I−1

2 (b2 × a1) (95)
d = (c2 × a1)T I−1

1 (c2 × a1) + (c2 × a1)T I−1
2 (c2 × a1) (96)
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2.4.4 Bias velocity vector

The bias velocity vectors btrans and brot for the translation and rotation constraints of the
hinge joint are used to correct the position error as discussed in section 1. As we have seen, we
can compute those vectors with:

btrans =
β

∆t
Ctrans(si) (97)

brot =
β

∆t
Crot(si) (98)

where Ctrans(si) and Ctrans(si) are the evaluations of the position constraints at state si.

Finally, here are the final velocity constraints for the hinge joint:

Ċtrans(s) + btrans = 0 (99)
Ċrot(s) + brot = 0 (100)

2.4.5 Limits

With the hinge joint, it is also possible to have limits to constrain the range of motion along the
translation axis. The limits that the user can specify are the minimum and maximum relative
rotation angle around the hinge axis.

Consider q1 and q2 the two quaternions representing the orientation of body B1 and body
B2. When the joint is created, we compute the initial orientation difference between the two
bodies. This is another quaternion called qinit.

qinit = q2 q
−1
1 (101)

Then, at each frame, we compute the current orientation difference qcurrent between the
two bodies with:

qcurrent = q2 q
−1
1 (102)

Then, we compute the relative orientation difference qdiff between the current and initial
state. We have:

qdiff = qcurrent q
−1
init (103)

Now, we need to extract the angle θ from the quaternion qdiff . To do this, we can rewrite
the quaternion as:

qdiff =

[
cos

(
θ

2

)
, sin

(
θ

2

)
v

]
(104)

where v is a unit length vector corresponding to the rotation direction of the quaternion
qdiff . Note that we have:

sin

(
θ

2

)
=

√
sin

(
θ

2

)
v · sin

(
θ

2

)
v (105)
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Then, we can use the atan2(x, y) function to find the angle θ.

θ

2
= atan2

(
sin

(
θ

2

)
, cos

(
θ

2

))
⇒ θ = 2 atan2

(
sin

(
θ

2

)
, cos

(
θ

2

))
(106)

The atan2(x, y) function returns an angle in the range (−π;π].

The user is able to define two angle limits θmin and θmax such that θmin ∈ [−2π; 0] and
θmax ∈ [0; 2π]. Those are the two limit angles for the relative rotation of the two bodies of the
joint around the hinge axis. Note that we consider that at the joint creation, the relative an-
gle between the bodies is zero. Moreover, we only work with angles in radian in the range [−π;π].

We will use two additional constraints for the limits of the joint. One for the minimum limit
and one for the maximum limit. As for the hinge joint position constraint, we will derive the
position constraints for the limits.

The minimum limit is specified by the θmin angle. The minimum limit constraint is violated
when :

θ(t) ≤ θmin (107)

Using this, we can create a minimum limit position constraint Cmin(s) :

Cmin(s) = θ(t)− θmin (108)

This limit constraint is satisfied when Cmin(s) ≥ 0. This position constraint is such that :
Cmin(s) : R12 → R. Now, we need to calculate the time derivative of the position constraint in
order to find the 1× 12 Jacobian matrix Jmin.

Ċmin(s) =
d

dt
(θ(t)− θmin)

=
d

dt
θ(t)

= ω · a
= (ω2 − ω1) · a

=
(
0 −aT 0 aT

)︸ ︷︷ ︸
Jmin


v1
ω1

v2
ω2

 (109)

where ω = ω2 −ω1 is the angular velocity difference between the two bodies. The function
θ(t) is the angle between the two bodies around the hinge axis. The corresponding angular
velocity ω is defined by :

ω =
dθ

dt
u (110)

where u is the unit length vector of the rotation axis. Here, the rotation axis is the hinge
axis a. Therefore, we have :

ω =
dθ

dt
a (111)
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Moreover, the hinge axis a is a unit length vector. Therefore, we have :

ω =
dθ

dt
a

⇔ ω · a =
dθ

dt
a · a

⇔ ω · a =
dθ

dt
‖a‖2

⇔ ω · a =
dθ

dt
(112)

This equality has been used in equation 109.

Then, we can compute the corresponding 1× 1 matrix Kmin :

Kmin = JminM
−1JT

min

=
(
0 −aT 0 aT

)
1
m1
E3 0 0 0

0 I−1
1 0 0

0 0 1
m2
E3 0

0 0 0 I−1
2

 JT
min

=
(
0 −aT I−1

1 0 aT I−1
2

)
0
−a
0
a


= aT I−1

1 a+ aT I−1
2 a (113)

That is all for the minimum limit. Now, we need to consider the maximum limit. The
maximum limit is specified by the θmax angle. The maximum limit constraint is violated when:

θ(t) ≥ θmax (114)

Using this, we can create a maximum limit constraint Cmax(s) :

Cmax(s) = θmax − θ(t) (115)

This limit constraint is satisfied when Cmax(s) ≥ 0. This position constraint is such that :
Cmax(s) : R12 → R. Now, we need to calculate the time derivative of this position constraint in
order to isolate the Jacobian matrix Jmax.

Ċmax(s) =
d

dt
(θmax − θ(t))

= − d

dt
θ(t)

= −ω · a
= −(ω2 − ω1) · a

=
(
0 aT 0 −aT

)︸ ︷︷ ︸
Jmax


v1
ω1

v2
ω2

 (116)
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Here Jmax is a 1× 12 matrix.

When we compute the 1× 1 matrix Kmax, we obtain the following result:

Kmax = JmaxM
−1JT

max

=
(
0 aT 0 −aT

)
1
m1
E3 0 0 0

0 I−1
1 0 0

0 0 1
m2
E3 0

0 0 0 I−1
2

 JT
max

=
(
0 aT I−1

1 0 −aT I−1
2

)
0
a
0
−a


= aT I−1

1 a+ aT I−1
2 a (117)

Therefore, we have Kmin = Kmax for the limits of the hinge joint.

The bias velocity vectors bmin and bmax for the limits constraints of the hinge joint are
used to correct the position error. Here is how to compute them :

bmin =
β

∆t
Cmin(si) (118)

bmax =
β

∆t
Cmax(si) (119)

where Cmin(si) and Cmax(si) are the evaluations of the limit constraints at state si. Finally,
we have the following two velocity constraints for the limits :

Ċmin(s) + bmin ≥ 0 (120)
Ċmax(s) + bmax ≥ 0 (121)

2.4.6 Motor

The motor of the hinge joint is used to keep a relative angular speed ωmotor between the bodies
of the joint around the hinge axis. In order to keep this relative speed, we need to apply a force
‖Fc‖ that cannot exceed a given maximum force ‖Fmax‖ specified by the user. The motor is
represented by a new constraint between the two bodies of the joint. Here is the constraint
between the angular velocities of the bodies :

a · (ω1 − ω2) = ωmotor (122)

This equation means that the relative angular velocity difference of the two bodies around
the hinge axis a has to be the motor speed ωmotor. Therefore, we can create the following
velocity constraint function Ċmotor(s):

Ċmotor(s) = a · (ω2 − ω1) + ωmotor = 0 (123)

As usual we can rewrite the velocity constraint using a 1× 12 Jacobian matrix Jmotor:
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Ċmotor(s) =
(
0 −aT 0 aT

)︸ ︷︷ ︸
Jmotor


v1
ω1

v2
ω2

+ ωmotor = Jmotorv + b (124)

Note that we have the error velocity vector b = ωmotor (a scalar value in this situation).

Now that we have the Jacobian matrix Jmotor, we can compute the 1 × 1 matrix Kmotor.
Observe that the Jacobian matrix Jmotor is equal to the Jacobian matrix Jmin of the hinge joint
minimum limit constraint. Therefore we have:

Kmotor = Kmin = aT I−1
1 a+ aT I−1

2 a (125)

Now, we still have to find the valid bounds on the Lagrange multiplier λmotor such that the
constraint force Fc used to satisfy the constraint is smaller than the maximum allowed force
‖Fmax‖. Using the same derivation as for the slider joint motor, we have the following bounds:

−‖Fmax‖∆t ≤ λ′motor ≤ ‖Fmax‖∆t (126)

2.5 Fixed Joint

A fixed joint does not allow any relative motion (neither translation nor rotation) between the
two bodies of the joint. It has zero degrees of freedom. The fixed joint is defined by a single
anchor point. At the joint creation, we store the anchor point in the local-space of each body.
Then, at each frame and for each body, we convert the local-space anchor point back into the
world-space to have the anchor point pi for each body Bi.

2.5.1 Position constraint

We have the following translation constraint:

Ctrans(s) = x2 + r2 + r2 − x1 − r1 (127)

where x1 and x2 are the world-space positions of body B1 and body B2 and r1 and r2
are the vectors from body center to the anchor point of each body in world-space coordinates
(pi = xi + ri). This translation constraint specifies that there should be no relative translation
between the two anchor points. This constraint removes three degrees of freedom from the
system. Therefore, we have : Ctrans(s) : R12 → R3. The constraint is satisfied when:

Ctrans(s) = 0 (128)

Note that this is exactly the same translation constraint as for the ball-and-socket joint (see
equation 45).

For the rotation, we have the following constraint function:

Crot(s) =

θ2x − θ1x

θ2y − θ1y

θ2z − θ1z

 (129)
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Here θix, θiy, θiz are the orientation angles of the body Bi around the x, y and z axis. Those
three rotation constraints mean that there should be no relative rotation between the two bodies.
This constraint removes three translation degrees of freedom from the system. Therefore, we
have : Crot(s) : R12 → R3. The constraint is satisfied when:

Crot(s) = 0 (130)

Observe that this is exactly the same rotation constraint as for the slider joint (see equation
53).

2.5.2 Time derivative

Then, we need to compute the time derivative Ċ(s) in order to find the Jacobian matrix.

As we have seen before, the translation constraint of the fixed joint is exactly the same as
the one for the ball-and-socket joint. Therefore, the time derivative of the translation constraint
is given by equation 47 and we have the following Jacobian matrix:

Jtrans =
(
−E3 [r1]x E3 −[r2]x

)
(131)

The rotation constraint of the fixed joint is the same as the one for the slider joint. Therefore,
the time derivative of the rotation constraint is given by equation 58 and we have the following
Jacobian matrix:

Jrot =
(
0 −E3 0 E3

)
(132)

2.5.3 Constraint mass matrix K

As we have seen before, the translation constraint of the fixed joint is the same as the one for
the ball-and-socket joint. Therefore, the 3× 3 matrix Ktrans is already given by equation 48.

Ktrans =
1

m1
E3 + [r1]xI

−1
1 [r1]Tx +

1

m2
E3 + [r2]xI

−1
2 [r2]Tx (133)

The rotation constraint of the fixed joint is the same as the rotation constraint of the slider
joint. Therefore, the 3× 3 matrix Krot is given by equation 60.

Krot = I−1
1 + I−1

2 (134)

2.5.4 Bias velocity vector

The bias velocity vectors btrans and brot for the translation and rotation constraints of the fixed
joint are used to correct the position error as discussed in section 1. As we have seen, we can
compute those vectors by:

btrans =
β

∆t
Ctrans(si) (135)

brot =
β

∆t
Crot(si) (136)
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where Ctrans(si) and Ctrans(si) are the evaluations of the position constraints at state si.

Finally, here are the final velocity constraints for the fixed joint:

Ċtrans(s) + btrans = 0 (137)
Ċrot(s) + brot = 0 (138)
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A Cross product as matrix multiplication

The cross product a × b can be written as a multiplication of the 3 × 3 matrix [a]x and the
vector b:

a× b = [a]xb =

 0 −a3 a2

a3 0 −a1

−a2 a1 0


︸ ︷︷ ︸

[a]x

b1b2
b3

 = [b]Txa (139)

where [a]x is a 3×3 skew-symmetric matrix constructed using the vector a. Remember that
a square matrix A is a skew symmetric matrix if we have:

−A = AT (140)

B Time derivative of a rotation matrix

Let R = R(t) be a 3 × 3 rotation matrix. We would like to find an expression for the time
derivative of this rotation matrix. We know that a rotation matrix is orthogonal and therefore,
we have:

R−1 = RT (141)

It also means that we have:

RRT = E3 (142)

where E3 is the 3 × 3 identity matrix. If we take the time derivative of both sides of this
equation, we have:

d
dt

(
RRT

)
= d

dtE3

⇔ ṘRT +RṘT = 0 (143)
⇔ S + ST = 0

⇔ −S = ST (144)

where:

S = ṘRT and ST = RṘT (145)

If we observe the equation 144, we can see that S is a skew-symmetric matrix (see equation
140). From equation 143, we have:

Ṙ = −STR = SR = [ω]xR (146)

where [ω]x is a 3 × 3 skew-symmetric matrix created as in appendix A with the angular
velocity vector ω. Therefore, if we want to compute the time derivative of a rotation matrix R
knowing the angular velocity ω, we simply have the following equation:

Ṙ = [ω]xR (147)
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C Time derivative of a fixed length vector

Consider that we have a fixed length vector v(t) that is rotating at an angular velocity ω(t).
The time derivative of vector v(t) is given by:

dv

dt
= ω × v (148)

Therefore, the time derivative of a fixed length vector is a vector perpendicular to the vector
v and to the angular velocity ω.
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